Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Data-Driven Affirmative Action Policies under Uncertainty (2007.01202v1)

Published 2 Jul 2020 in cs.CY and cs.LG

Abstract: In this paper, we study university admissions under a centralized system that uses grades and standardized test scores to match applicants to university programs. We consider affirmative action policies that seek to increase the number of admitted applicants from underrepresented groups. Since such a policy has to be announced before the start of the application period, there is uncertainty about the score distribution of the students applying to each program. This poses a difficult challenge for policy-makers. We explore the possibility of using a predictive model trained on historical data to help optimize the parameters of such policies.

Summary

We haven't generated a summary for this paper yet.