2000 character limit reached
    
  On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity (2007.01091v2)
    Published 2 Jul 2020 in math.AP
  
  Abstract: We show strong convergence of the vorticities in the vanishing viscosity limit for the incompressible Navier-Stokes equations on the two-dimensional torus, assuming only that the initial vorticity of the limiting Euler equations is in $Lp$ for some $p>1$. This substantially extends a recent result of Constantin, Drivas and Elgindi, who proved strong convergence in the case $p=\infty$. Our proof, which relies on the classical renormalization theory of DiPerna-Lions, is surprisingly simple.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.