Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 61 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Mixed-norm estimates via the helicoidal method (2007.01080v2)

Published 2 Jul 2020 in math.CA

Abstract: We prove multiple vector-valued and mixed-norm estimates for multilinear operators in $\rr Rd$, more precisely for multilinear operators $T_k$ associated to a symbol singular along a $k$-dimensional space and for multilinear variants of the Hardy-Littlewood maximal function. When the dimension $d \geq 2$, the input functions are not necessarily in $Lp(\rr Rd)$ and can instead be elements of mixed-norm spaces $L{p_1}_{x_1} \ldots L{p_d}_{x_d}$. Such a result has interesting consequences especially when $L\infty$ spaces are involved. Among these, we mention mixed-norm Loomis-Whitney-type inequalities for singular integrals, as well as the boundedness of multilinear operators associated to certain rational symbols. We also present examples of operators that are not susceptible to isotropic rescaling, which only satisfy ``purely mixed-norm estimates" and no classical $Lp$ estimates. Relying on previous estimates implied by the helicoidal method, we also prove (non-mixed-norm) estimates for generic singular Brascamp-Lieb-type inequalities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.