Papers
Topics
Authors
Recent
2000 character limit reached

Build2Vec: Building Representation in Vector Space

Published 1 Jul 2020 in cs.CY, cs.DM, and cs.LG | (2007.00740v1)

Abstract: In this paper, we represent a methodology of a graph embeddings algorithm that is used to transform labeled property graphs obtained from a Building Information Model (BIM). Industrial Foundation Classes (IFC) is a standard schema for BIM, which is utilized to convert the building data into a graph representation. We used node2Vec with biased random walks to extract semantic similarities between different building components and represent them in a multi-dimensional vector space. A case study implementation is conducted on a net-zero-energy building located at the National University of Singapore (SDE4). This approach shows promising machine learning applications in capturing the semantic relations and similarities of different building objects, more specifically, spatial and spatio-temporal data.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.