Bartnik mass minimizing initial data sets and improvability of the dominant energy scalar (2007.00593v2)
Abstract: We introduce the concept of improvability of the dominant energy scalar, and we derive strong consequences of non-improvability. In particular, we prove that a non-improvable initial data set without local symmetries must sit inside a null perfect fluid spacetime carrying a global Killing vector field. We also show that the dominant energy scalar is always almost improvable in a precise sense. Using these main results, we provide a characterization of Bartnik mass minimizing initial data sets which makes substantial progress toward Bartnik's stationary conjecture. Along the way we observe that in dimensions greater than eight there exist pp-wave counterexamples (without the optimal decay rate for asymptotically flatness) to the equality case of the spacetime positive mass theorem. As a consequence, there exist counterexamples to Bartnik's stationary and strict positivity conjectures in those dimensions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.