Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Spectral Clustering (2007.00280v4)

Published 1 Jul 2020 in quant-ph

Abstract: Spectral clustering is a powerful unsupervised machine learning algorithm for clustering data with non convex or nested structures. With roots in graph theory, it uses the spectral properties of the Laplacian matrix to project the data in a low-dimensional space where clustering is more efficient. Despite its success in clustering tasks, spectral clustering suffers in practice from a fast-growing running time of $O(n3)$, where $n$ is the number of points in the dataset. In this work we propose an end-to-end quantum algorithm performing spectral clustering, extending a number of works in quantum machine learning. The quantum algorithm is composed of two parts: the first is the efficient creation of the quantum state corresponding to the projected Laplacian matrix, and the second consists of applying the existing quantum analogue of the $k$-means algorithm. Both steps depend polynomially on the number of clusters, as well as precision and data parameters arising from quantum procedures, and polylogarithmically on the dimension of the input vectors. Our numerical simulations show an asymptotic linear growth with $n$ when all terms are taken into account, significantly better than the classical cubic growth. This work opens the path to other graph-based quantum machine learning algorithms, as it provides routines for efficient computation and quantum access to the Incidence, Adjacency, and projected Laplacian matrices of a graph.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube