Papers
Topics
Authors
Recent
2000 character limit reached

Mining Documentation to Extract Hyperparameter Schemas (2006.16984v2)

Published 30 Jun 2020 in cs.LG, cs.DB, and stat.ML

Abstract: AI automation tools need machine-readable hyperparameter schemas to define their search spaces. At the same time, AI libraries often come with good human-readable documentation. While such documentation contains most of the necessary information, it is unfortunately not ready to consume by tools. This paper describes how to automatically mine Python docstrings in AI libraries to extract JSON Schemas for their hyperparameters. We evaluate our approach on 119 transformers and estimators from three different libraries and find that it is effective at extracting machine-readable schemas. Our vision is to reduce the burden to manually create and maintain such schemas for AI automation tools and broaden the reach of automation to larger libraries and richer schemas.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.