Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Accelerating Atomistic Simulations with Piecewise Machine Learned Ab Initio Potentials at Classical Force Field-like Cost (2006.16482v4)

Published 30 Jun 2020 in physics.comp-ph and physics.chem-ph

Abstract: Machine learning methods have nowadays become easy-to-use tools for constructing high-dimensional interatomic potentials with ab initio accuracy. Although machine learned interatomic potentials are generally orders of magnitude faster than first-principles calculations, they remain much slower than classical force fields, at the price of using more complex structural descriptors. To bridge this efficiency gap, we propose an embedded atom neural network approach with simple piecewise switching function based descriptors, resulting in a favorable linear scaling with the number of neighbor atoms. Numerical examples validate that this piecewise machine learning model can be over an order of magnitude faster than various popular machine learned potentials with comparable accuracy for both metallic and covalent materials, approaching the speed of the fastest embedded atom method (i.e. several {\mu}s/atom per CPU core). The extreme efficiency of this approach promises its potential in first-principles atomistic simulations of very large systems and/or in long timescale.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.