Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models (2006.13850v4)

Published 24 Jun 2020 in stat.ME, econ.GN, and q-fin.EC

Abstract: Understanding the dynamics and evolution of climate change and associated uncertainties is key for designing robust policy actions. Computer models are key tools in this scientific effort, which have now reached a high level of sophistication and complexity. Model auditing is needed in order to better understand their results, and to deal with the fact that such models are increasingly opaque with respect to their inner workings. Current techniques such as Global Sensitivity Analysis (GSA) are limited to dealing either with multivariate outputs, stochastic ones, or finite-change inputs. This limits their applicability to time-varying variables such as future pathways of greenhouse gases. To provide additional semantics in the analysis of a model ensemble, we provide an extension of GSA methodologies tackling the case of stochastic functional outputs with finite change inputs. To deal with finite change inputs and functional outputs, we propose an extension of currently available GSA methodologies while we deal with the stochastic part by introducing a novel, domain-selective inferential technique for sensitivity indices. Our method is explored via a simulation study that shows its robustness and efficacy in detecting sensitivity patterns. We apply it to real world data, where its capabilities can provide to practitioners and policymakers additional information about the time dynamics of sensitivity patterns, as well as information about robustness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: