Quantum Periods and Spectra in Dimer Models and Calabi-Yau Geometries
Abstract: We study a class of quantum integrable systems derived from dimer graphs and also described by local toric Calabi-Yau geometries with higher genus mirror curves, generalizing some previous works on genus one mirror curves. We compute the spectra of the quantum systems both by standard perturbation method and by Bohr-Sommerfeld method with quantum periods as the phase volumes. In this way, we obtain some exact analytic results for the classical and quantum periods of the Calabi-Yau geometries. We also determine the differential operators of the quantum periods and compute the topological string free energy in Nekrasov-Shatashvili (NS) limit. The results agree with calculations from other methods such as the topological vertex.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.