Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Intrinsic Flat Stability of Manifolds with Boundary where Volume Converges and Distance is Bounded Below (2006.13030v2)

Published 23 Jun 2020 in math.DG and math.MG

Abstract: Given a compact, connected, and oriented manifold with boundary $M$ and a sequence of smooth Riemannian metrics defined on it, $g_j$, we prove volume preserving intrinsic flat convergence of the sequence to the smooth Riemannian metric $g_0$ provided $g_j$ always measures vectors strictly larger than or equal to $g_0$, the diameter of $g_j$ is uniformly bounded, the volume of $g_j$ converges to the volume of $g_0$, and $L{\frac{m-1}{2}}$ convergence of the metrics restricted to the boundary. Many examples are reviewed which justify and explain the intuition behind these hypotheses. These examples also show that uniform, Lipschitz, and Gromov-Hausdorff convergence are not appropriate in this setting. Our results provide a new rigorous method of proving some special cases of the intrinsic flat stability of the positive mass theorem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.