Papers
Topics
Authors
Recent
Search
2000 character limit reached

Approximation algorithms for general cluster routing problem

Published 23 Jun 2020 in cs.DS | (2006.12929v1)

Abstract: Graph routing problems have been investigated extensively in operations research, computer science and engineering due to their ubiquity and vast applications. In this paper, we study constant approximation algorithms for some variations of the general cluster routing problem. In this problem, we are given an edge-weighted complete undirected graph $G=(V,E,c),$ whose vertex set is partitioned into clusters $C_{1},\dots ,C_{k}.$ We are also given a subset $V'$ of $V$ and a subset $E'$ of $E.$ The weight function $c$ satisfies the triangle inequality. The goal is to find a minimum cost walk $T$ that visits each vertex in $V'$ only once, traverses every edge in $E'$ at least once and for every $i\in [k]$ all vertices of $C_i$ are traversed consecutively.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.