Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sound Event Localization and Detection Using Activity-Coupled Cartesian DOA Vector and RD3net (2006.12014v2)

Published 22 Jun 2020 in eess.AS and cs.SD

Abstract: Our systems submitted to the DCASE2020 task~3: Sound Event Localization and Detection (SELD) are described in this report. We consider two systems: a single-stage system that solve sound event localization~(SEL) and sound event detection~(SED) simultaneously, and a two-stage system that first handles the SED and SEL tasks individually and later combines those results. As the single-stage system, we propose a unified training framework that uses an activity-coupled Cartesian DOA vector~(ACCDOA) representation as a single target for both the SED and SEL tasks. To efficiently estimate sound event locations and activities, we further propose RD3Net, which incorporates recurrent and convolution layers with dense skip connections and dilation. To generalize the models, we apply three data augmentation techniques: equalized mixture data augmentation~(EMDA), rotation of first-order Ambisonic~(FOA) singals, and multichannel extension of SpecAugment. Our systems demonstrate a significant improvement over the baseline system.

Citations (19)

Summary

We haven't generated a summary for this paper yet.