Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mapping Low-Resolution Images To Multiple High-Resolution Images Using Non-Adversarial Mapping

Published 21 Jun 2020 in eess.IV, cs.CV, cs.LG, and stat.ML | (2006.11708v2)

Abstract: Several methods have recently been proposed for the Single Image Super-Resolution (SISR) problem. The current methods assume that a single low-resolution image can only yield a single high-resolution image. In addition, all of these methods use low-resolution images that were artificially generated through simple bilinear down-sampling. We argue that, first and foremost, the problem of SISR is an one-to-many mapping problem between the low-resolution and all possible candidate high-resolution images and we address the challenging task of learning how to realistically degrade and down-sample high-resolution images. To circumvent this problem, we propose SR-NAM which utilizes the Non-Adversarial Mapping (NAM) technique. Furthermore, we propose a degradation model that learns how to transform high-resolution images to low-resolution images that resemble realistically taken low-resolution photos. Finally, some qualitative results for the proposed method along with the weaknesses of SR-NAM are included.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.