The Lang-Trotter Conjecture for products of non-CM elliptic curves (2006.11269v1)
Abstract: Inspired by the work of Lang-Trotter on the densities of primes with fixed Frobenius traces for elliptic curves defined over $\mathbb{Q}$ and by the subsequent generalization of Cojocaru-Davis-Silverberg-Stange to generic abelian varieties, we study the analogous question for abelian surfaces isogenous to products of non-CM elliptic curves over $\mathbb{Q}$. We formulate the corresponding conjectural asymptotic, provide upper bounds, and explicitly compute (when the elliptic curves lie outside a thin set) the arithmetically significant constants appearing in the asymptotic. This allows us to provide computational evidence for the conjecture.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.