Papers
Topics
Authors
Recent
2000 character limit reached

Memory-efficient structured convex optimization via extreme point sampling (2006.10945v2)

Published 19 Jun 2020 in math.OC

Abstract: Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an $n\times n$ matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance matrix is near-feasible and near-optimal for the SDP. We show how to develop such an algorithm by modifying the Frank-Wolfe algorithm to systematically replace the matrix iterates with random vectors. As an application of this approach, we show how to implement the Goemans-Williamson approximation algorithm for \textsc{MaxCut} using $\mathcal{O}(n)$ memory in addition to the memory required to store the problem instance. We then extend our approach to deal with a broader range of structured convex optimization problems, replacing decision variables with random extreme points of the feasible region.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.