Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Lobachevsky-type Formulas via Fourier Analysis (2006.09575v1)

Published 17 Jun 2020 in math.CA

Abstract: Recently renewed interest in the Lobachevsky-type integrals and interesting identities involving the cardinal sine motivate an extension of the classical Parseval formula involving both periodic and non-periodic functions. We develop a version of the Parseval formula that is often more practical in applications and illustrate its use by extending recent results on Lobachevsky-type integrals. Some previously known, interesting identities are re-proved in a more transparent manner and new formulas for integrals involving cardinal sine and Bessel functions are given.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.