A One-Pass Private Sketch for Most Machine Learning Tasks
Abstract: Differential privacy (DP) is a compelling privacy definition that explains the privacy-utility tradeoff via formal, provable guarantees. Inspired by recent progress toward general-purpose data release algorithms, we propose a private sketch, or small summary of the dataset, that supports a multitude of machine learning tasks including regression, classification, density estimation, near-neighbor search, and more. Our sketch consists of randomized contingency tables that are indexed with locality-sensitive hashing and constructed with an efficient one-pass algorithm. We prove competitive error bounds for DP kernel density estimation. Existing methods for DP kernel density estimation scale poorly, often exponentially slower with an increase in dimensions. In contrast, our sketch can quickly run on large, high-dimensional datasets in a single pass. Exhaustive experiments show that our generic sketch delivers a similar privacy-utility tradeoff when compared to existing DP methods at a fraction of the computation cost. We expect that our sketch will enable differential privacy in distributed, large-scale machine learning settings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.