P=W conjectures for character varieties with symplectic resolution (2006.08752v4)
Abstract: We establish P=W and PI=WI conjectures for character varieties with structural group $\mathrm{GL}_n$ and $\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-\'{e}tale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, and the projectivity of the compactification of the de Rham moduli space. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.