Papers
Topics
Authors
Recent
2000 character limit reached

P=W conjectures for character varieties with symplectic resolution

Published 15 Jun 2020 in math.AG | (2006.08752v4)

Abstract: We establish P=W and PI=WI conjectures for character varieties with structural group $\mathrm{GL}_n$ and $\mathrm{SL}_n$ which admit a symplectic resolution, i.e. for genus 1 and arbitrary rank, and genus 2 and rank 2. We formulate the P=W conjecture for resolution, and prove it for symplectic resolutions. We exploit the topology of birational and quasi-\'{e}tale modifications of Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent interest, like the construction of a relative compactification of the Hodge moduli space for reductive algebraic groups, and the projectivity of the compactification of the de Rham moduli space. In particular, we study in detail a Dolbeault moduli space which is specialization of the singular irreducible holomorphic symplectic variety of type O'Grady 6.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.