Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geo-PIFu: Geometry and Pixel Aligned Implicit Functions for Single-view Human Reconstruction (2006.08072v2)

Published 15 Jun 2020 in cs.CV, cs.GR, and cs.LG

Abstract: We propose Geo-PIFu, a method to recover a 3D mesh from a monocular color image of a clothed person. Our method is based on a deep implicit function-based representation to learn latent voxel features using a structure-aware 3D U-Net, to constrain the model in two ways: first, to resolve feature ambiguities in query point encoding, second, to serve as a coarse human shape proxy to regularize the high-resolution mesh and encourage global shape regularity. We show that, by both encoding query points and constraining global shape using latent voxel features, the reconstruction we obtain for clothed human meshes exhibits less shape distortion and improved surface details compared to competing methods. We evaluate Geo-PIFu on a recent human mesh public dataset that is $10 \times$ larger than the private commercial dataset used in PIFu and previous derivative work. On average, we exceed the state of the art by $42.7\%$ reduction in Chamfer and Point-to-Surface Distances, and $19.4\%$ reduction in normal estimation errors.

Citations (157)

Summary

We haven't generated a summary for this paper yet.