Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the atomic structure of exponential Puiseux monoids and semirings (2006.07791v2)

Published 14 Jun 2020 in math.AC

Abstract: A Puiseux monoid is an additive submonoid of the nonnegative cone of the rational numbers. We say that a Puiseux monoid $M$ is exponential provided that there exist a positive rational $r$ and a set $S$ consisting of nonnegative integers, which contains $0$, such that $M$ is generated by the set ${rs \mid s \in S}$. If $M$ is multiplicatively closed then we say that $M$ is an exponential Puiseux semiring. Here we study the atomic properties of exponential Puiseux monoids and semirings. First, we characterize atomic exponential Puiseux monoids, and we prove that the finite factorization property, the bounded factorization property, and the ACCP coincide in this context. Then we proceed to offer a necessary condition and a sufficient condition for an exponential Puiseux monoid to satisfy the ACCP. We conclude by describing the exponential Puiseux monoids that are semirings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube