Papers
Topics
Authors
Recent
2000 character limit reached

FakePolisher: Making DeepFakes More Detection-Evasive by Shallow Reconstruction

Published 13 Jun 2020 in cs.CV, cs.CR, and cs.LG | (2006.07533v3)

Abstract: At this moment, GAN-based image generation methods are still imperfect, whose upsampling design has limitations in leaving some certain artifact patterns in the synthesized image. Such artifact patterns can be easily exploited (by recent methods) for difference detection of real and GAN-synthesized images. However, the existing detection methods put much emphasis on the artifact patterns, which can become futile if such artifact patterns were reduced. Towards reducing the artifacts in the synthesized images, in this paper, we devise a simple yet powerful approach termed FakePolisher that performs shallow reconstruction of fake images through a learned linear dictionary, intending to effectively and efficiently reduce the artifacts introduced during image synthesis. The comprehensive evaluation on 3 state-of-the-art DeepFake detection methods and fake images generated by 16 popular GAN-based fake image generation techniques, demonstrates the effectiveness of our technique.Overall, through reducing artifact patterns, our technique significantly reduces the accuracy of the 3 state-of-the-art fake image detection methods, i.e., 47% on average and up to 93% in the worst case.

Citations (64)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.