Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Last-passage time for linear diffusions and application to the emptying time of a box (2006.06758v1)

Published 11 Jun 2020 in cond-mat.stat-mech, math-ph, math.MP, and math.PR

Abstract: We study the statistics of last-passage time for linear diffusions. First we present an elementary derivation of the Laplace transform of the probability density of the last-passage time, thus recovering known results from the mathematical literature. We then illustrate them on several explicit examples. In a second step we study the spectral properties of the Schr\"{o}dinger operator associated to such diffusions in an even potential $U(x) = U(-x)$, unveiling the role played by the so-called Weyl coefficient. Indeed, in this case, our approach allows us to relate the last-passage times for dual diffusions (i.e., diffusions driven by opposite force fields) and to obtain new explicit formulae for the mean last-passage time. We further show that, for such even potentials, the small time $t$ expansion of the mean last-passage time on the interval $[0,t]$ involves the Korteveg-de Vries invariants, which are well known in the theory of Schr\"odinger operators. Finally, we apply these results to study the emptying time of a one-dimensional box, of size $L$, containing $N$ independent Brownian particles subjected to a constant drift. In the scaling limit where both $N \to \infty$ and $L \to \infty$, keeping the density $\rho = N/L$ fixed, we show that the limiting density of the emptying time is given by a Gumbel distribution. Our analysis provides a new example of the applications of extreme value statistics to out-of-equilibrium systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.