Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Monotone Dynamics by Neural Networks (2006.06417v2)

Published 11 Jun 2020 in cs.LG, math.DS, and math.OC

Abstract: Feed-forward neural networks (FNNs) work as standard building blocks in applying AI to the physical world. They allow learning the dynamics of unknown physical systems (e.g., biological and chemical) {to predict their future behavior}. However, they are likely to violate the physical constraints of those systems without proper treatment. This work focuses on imposing two important physical constraints: monotonicity (i.e., a partial order of system states is preserved over time) and stability (i.e., the system states converge over time) when using FNNs to learn physical dynamics. For monotonicity constraints, we propose to use nonnegative neural networks and batch normalization. For both monotonicity and stability constraints, we propose to learn the system dynamics and corresponding Lyapunov function simultaneously. As demonstrated by case studies, our methods can preserve the stability and monotonicity of FNNs and significantly reduce their prediction errors.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.