Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Graph-Based Modeling Abstraction for Optimization: Concepts and Implementation in Plasmo.jl (2006.05378v2)

Published 9 Jun 2020 in math.OC

Abstract: We present a general graph-based modeling abstraction for optimization that we call an OptiGraph. Under this abstraction, any optimization problem is treated as a hierarchical hypergraph in which nodes represent optimization subproblems and edges represent connectivity between such subproblems. The abstraction enables the modular construction of highly complex models in an intuitive manner, facilitates the use of graph analysis tools (to perform partitioning, aggregation, and visualization tasks), and facilitates communication of structures to decomposition algorithms. We provide an open-source implementation of the abstraction in the Julia-based package Plasmo.jl. We provide tutorial examples and large application case studies to illustrate the capabilities.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.