Papers
Topics
Authors
Recent
2000 character limit reached

Self-Distillation as Instance-Specific Label Smoothing

Published 9 Jun 2020 in cs.LG and stat.ML | (2006.05065v2)

Abstract: It has been recently demonstrated that multi-generational self-distillation can improve generalization. Despite this intriguing observation, reasons for the enhancement remain poorly understood. In this paper, we first demonstrate experimentally that the improved performance of multi-generational self-distillation is in part associated with the increasing diversity in teacher predictions. With this in mind, we offer a new interpretation for teacher-student training as amortized MAP estimation, such that teacher predictions enable instance-specific regularization. Our framework allows us to theoretically relate self-distillation to label smoothing, a commonly used technique that regularizes predictive uncertainty, and suggests the importance of predictive diversity in addition to predictive uncertainty. We present experimental results using multiple datasets and neural network architectures that, overall, demonstrate the utility of predictive diversity. Finally, we propose a novel instance-specific label smoothing technique that promotes predictive diversity without the need for a separately trained teacher model. We provide an empirical evaluation of the proposed method, which, we find, often outperforms classical label smoothing.

Citations (106)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.