Papers
Topics
Authors
Recent
Search
2000 character limit reached

Outlier Detection Using a Novel method: Quantum Clustering

Published 8 Jun 2020 in cs.LG, cs.AI, and stat.ML | (2006.04760v1)

Abstract: We propose a new assumption in outlier detection: Normal data instances are commonly located in the area that there is hardly any fluctuation on data density, while outliers are often appeared in the area that there is violent fluctuation on data density. And based on this hypothesis, we apply a novel density-based approach to unsupervised outlier detection. This approach, called Quantum Clustering (QC), deals with unlabeled data processing and constructs a potential function to find the centroids of clusters and the outliers. The experiments show that the potential function could clearly find the hidden outliers in data points effectively. Besides, by using QC, we could find more subtle outliers by adjusting the parameter $\sigma$. Moreover, our approach is also evaluated on two datasets (Air Quality Detection and Darwin Correspondence Project) from two different research areas, and the results show the wide applicability of our method.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.