Secure Byzantine-Robust Machine Learning
Abstract: Increasingly machine learning systems are being deployed to edge servers and devices (e.g. mobile phones) and trained in a collaborative manner. Such distributed/federated/decentralized training raises a number of concerns about the robustness, privacy, and security of the procedure. While extensive work has been done in tackling with robustness, privacy, or security individually, their combination has rarely been studied. In this paper, we propose a secure two-server protocol that offers both input privacy and Byzantine-robustness. In addition, this protocol is communication-efficient, fault-tolerant and enjoys local differential privacy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.