Papers
Topics
Authors
Recent
2000 character limit reached

Learning under Invariable Bayesian Safety (2006.04497v1)

Published 8 Jun 2020 in cs.GT, cs.AI, cs.CY, and cs.LG

Abstract: A recent body of work addresses safety constraints in explore-and-exploit systems. Such constraints arise where, for example, exploration is carried out by individuals whose welfare should be balanced with overall welfare. In this paper, we adopt a model inspired by recent work on a bandit-like setting for recommendations. We contribute to this line of literature by introducing a safety constraint that should be respected in every round and determines that the expected value in each round is above a given threshold. Due to our modeling, the safe explore-and-exploit policy deserves careful planning, or otherwise, it will lead to sub-optimal welfare. We devise an asymptotically optimal algorithm for the setting and analyze its instance-dependent convergence rate.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.