Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Chromatic Learning for Sparse Datasets (2006.03779v1)

Published 6 Jun 2020 in stat.ML and cs.LG

Abstract: Learning over sparse, high-dimensional data frequently necessitates the use of specialized methods such as the hashing trick. In this work, we design a highly scalable alternative approach that leverages the low degree of feature co-occurrences present in many practical settings. This approach, which we call Chromatic Learning (CL), obtains a low-dimensional dense feature representation by performing graph coloring over the co-occurrence graph of features---an approach previously used as a runtime performance optimization for GBDT training. This color-based dense representation can be combined with additional dense categorical encoding approaches, e.g., submodular feature compression, to further reduce dimensionality. CL exhibits linear parallelizability and consumes memory linear in the size of the co-occurrence graph. By leveraging the structural properties of the co-occurrence graph, CL can compress sparse datasets, such as KDD Cup 2012, that contain over 50M features down to 1024, using an order of magnitude fewer features than frequency-based truncation and the hashing trick while maintaining the same test error for linear models. This compression further enables the use of deep networks in this wide, sparse setting, where CL similarly has favorable performance compared to existing baselines for budgeted input dimension.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.