Papers
Topics
Authors
Recent
2000 character limit reached

COVID-19 diagnosis by routine blood tests using machine learning

Published 4 Jun 2020 in physics.med-ph, cs.LG, q-bio.QM, and stat.ML | (2006.03476v1)

Abstract: Physicians taking care of patients with coronavirus disease (COVID-19) have described different changes in routine blood parameters. However, these changes, hinder them from performing COVID-19 diagnosis. We constructed a machine learning predictive model for COVID-19 diagnosis. The model was based and cross-validated on the routine blood tests of 5,333 patients with various bacterial and viral infections, and 160 COVID-19-positive patients. We selected operational ROC point at a sensitivity of 81.9% and specificity of 97.9%. The cross-validated area under the curve (AUC) was 0.97. The five most useful routine blood parameters for COVID19 diagnosis according to the feature importance scoring of the XGBoost algorithm were MCHC, eosinophil count, albumin, INR, and prothrombin activity percentage. tSNE visualization showed that the blood parameters of the patients with severe COVID-19 course are more like the parameters of bacterial than viral infection. The reported diagnostic accuracy is at least comparable and probably complementary to RT-PCR and chest CT studies. Patients with fever, cough, myalgia, and other symptoms can now have initial routine blood tests assessed by our diagnostic tool. All patients with a positive COVID-19 prediction would then undergo standard RT-PCR studies to confirm the diagnosis. We believe that our results present a significant contribution to improvements in COVID-19 diagnosis.

Citations (132)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.