Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Enumeration of standard barely set-valued tableaux of shifted shapes (2006.03253v2)

Published 5 Jun 2020 in math.CO

Abstract: A standard barely set-valued tableau of shape $\lambda$ is a filling of the Young diagram $\lambda$ with integers $1,2,\dots,|\lambda|+1$ such that the integers are increasing in each row and column, and every cell contains one integer except one cell that contains two integers. Counting standard barely set-valued tableaux is closely related to the coincidental down-degree expectations (CDE) of lower intervals in Young's lattice. Using $q$-integral techniques we give a formula for the number of standard barely set-valued tableaux of arbitrary shifted shape. We show how it can be used to recover two formulas, originally conjectured by Reiner, Tenner and Yong, and proved by Hopkins, for numbers of standard barely set valued tableaux of particular shifted-balanced shapes. We also prove a conjecture of Reiner, Tenner and Yong on the CDE property of the shifted shape $(n,n-2,n-4,\dots,n-2k+2)$. Finally, in the Appendix we raise a conjecture on an $\mathsf a;q$-analogue of the down-degree expectation with respect to the uniform distribution for a specific class of lower order ideals of Young's lattice.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube