Papers
Topics
Authors
Recent
2000 character limit reached

Arithmeticity, superrigidity and totally geodesic submanifolds of complex hyperbolic manifolds

Published 4 Jun 2020 in math.DS, math.AG, math.GT, and math.NT | (2006.03008v2)

Abstract: For $n \ge 2$, we prove that a finite volume complex hyperbolic $n$-manifold containing infinitely many maximal properly immersed totally geodesic submanifolds of dimension at least two is arithmetic, paralleling our previous work for real hyperbolic manifolds. As in the real hyperbolic case, our primary result is a superrigidity theorem for certain representations of complex hyperbolic lattices. The proof requires developing new general tools not needed in the real hyperbolic case. Our main results also have a number of other applications. For example, we prove nonexistence of certain maps between complex hyperbolic manifolds, which is related to a question of Siu, that certain hyperbolic $3$-manifolds cannot be totally geodesic submanifolds of complex hyperbolic manifolds, and that arithmeticity of complex hyperbolic manifolds is detected purely by the topology of the underlying complex variety, which is related to a question of Margulis. Our results also provide some evidence for a conjecture of Klingler that is a broad generalization of the Zilber--Pink conjecture.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.