Papers
Topics
Authors
Recent
Search
2000 character limit reached

Auto-decoding Graphs

Published 4 Jun 2020 in cs.LG and stat.ML | (2006.02879v1)

Abstract: We present an approach to synthesizing new graph structures from empirically specified distributions. The generative model is an auto-decoder that learns to synthesize graphs from latent codes. The graph synthesis model is learned jointly with an empirical distribution over the latent codes. Graphs are synthesized using self-attention modules that are trained to identify likely connectivity patterns. Graph-based normalizing flows are used to sample latent codes from the distribution learned by the auto-decoder. The resulting model combines accuracy and scalability. On benchmark datasets of large graphs, the presented model outperforms the state of the art by a factor of 1.5 in mean accuracy and average rank across at least three different graph statistics, with a 2x speedup during inference.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.