CAPPA: Continuous-time Accelerated Proximal Point Algorithm for Sparse Recovery
Abstract: This paper develops a novel Continuous-time Accelerated Proximal Point Algorithm (CAPPA) for $\ell_1$-minimization problems with provable fixed-time convergence guarantees. The problem of $\ell_1$-minimization appears in several contexts, such as sparse recovery (SR) in Compressed Sensing (CS) theory, and sparse linear and logistic regressions in machine learning to name a few. Most existing algorithms for solving $\ell_1$-minimization problems are discrete-time, inefficient and require exhaustive computer-guided iterations. CAPPA alleviates this problem on two fronts: (a) it encompasses a continuous-time algorithm that can be implemented using analog circuits; (b) it betters LCA and finite-time LCA (recently developed continuous-time dynamical systems for solving SR problems) by exhibiting provable fixed-time convergence to optimal solution. Consequently, CAPPA is better suited for fast and efficient handling of SR problems. Simulation studies are presented that corroborate computational advantages of CAPPA.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.