Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

PLG-IN: Pluggable Geometric Consistency Loss with Wasserstein Distance in Monocular Depth Estimation (2006.02068v2)

Published 3 Jun 2020 in cs.CV and cs.RO

Abstract: We propose a novel objective for penalizing geometric inconsistencies to improve the depth and pose estimation performance of monocular camera images. Our objective is designed using the Wasserstein distance between two point clouds, estimated from images with different camera poses. The Wasserstein distance can impose a soft and symmetric coupling between two point clouds, which suitably maintains geometric constraints and results in a differentiable objective. By adding our objective to the those of other state-of-the-art methods, we can effectively penalize geometric inconsistencies and obtain highly accurate depth and pose estimations. Our proposed method is evaluated using the KITTI dataset.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.