Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SfMLearner++: Learning Monocular Depth & Ego-Motion using Meaningful Geometric Constraints (1812.08370v1)

Published 20 Dec 2018 in cs.RO and cs.CV

Abstract: Most geometric approaches to monocular Visual Odometry (VO) provide robust pose estimates, but sparse or semi-dense depth estimates. Off late, deep methods have shown good performance in generating dense depths and VO from monocular images by optimizing the photometric consistency between images. Despite being intuitive, a naive photometric loss does not ensure proper pixel correspondences between two views, which is the key factor for accurate depth and relative pose estimations. It is a well known fact that simply minimizing such an error is prone to failures. We propose a method using Epipolar constraints to make the learning more geometrically sound. We use the Essential matrix, obtained using Nister's Five Point Algorithm, for enforcing meaningful geometric constraints on the loss, rather than using it as labels for training. Our method, although simplistic but more geometrically meaningful, using lesser number of parameters, gives a comparable performance to state-of-the-art methods which use complex losses and large networks showing the effectiveness of using epipolar constraints. Such a geometrically constrained learning method performs successfully even in cases where simply minimizing the photometric error would fail.

Citations (24)

Summary

We haven't generated a summary for this paper yet.