Papers
Topics
Authors
Recent
2000 character limit reached

Learning with CVaR-based feedback under potentially heavy tails

Published 3 Jun 2020 in stat.ML and cs.LG | (2006.02001v1)

Abstract: We study learning algorithms that seek to minimize the conditional value-at-risk (CVaR), when all the learner knows is that the losses incurred may be heavy-tailed. We begin by studying a general-purpose estimator of CVaR for potentially heavy-tailed random variables, which is easy to implement in practice, and requires nothing more than finite variance and a distribution function that does not change too fast or slow around just the quantile of interest. With this estimator in hand, we then derive a new learning algorithm which robustly chooses among candidates produced by stochastic gradient-driven sub-processes. For this procedure we provide high-probability excess CVaR bounds, and to complement the theory we conduct empirical tests of the underlying CVaR estimator and the learning algorithm derived from it.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.