Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minimal model-universal flows for locally compact Polish groups

Published 2 Jun 2020 in math.DS, math.GR, and math.LO | (2006.01710v1)

Abstract: Let $G$ be a locally compact Polish group. A metrizable $G$-flow $Y$ is called model-universal if by considering the various invariant probability measures on $Y$, we can recover every free action of $G$ on a standard Lebesgue space up to isomorphism. Weiss has shown that for countable $G$, there exists a minimal, model-universal flow. In this paper, we extend this result to all locally compact Polish groups.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.