Quantum polar decomposition algorithm (2006.00841v1)
Abstract: The polar decomposition for a matrix $A$ is $A=UB$, where $B$ is a positive Hermitian matrix and $U$ is unitary (or, if $A$ is not square, an isometry). This paper shows that the ability to apply a Hamiltonian $\pmatrix{ 0 & A\dagger \cr A & 0 \cr} $ translates into the ability to perform the transformations $e{-iBt}$ and $U$ in a deterministic fashion. We show how to use the quantum polar decomposition algorithm to solve the quantum Procrustes problem, to perform pretty good measurements, to find the positive Hamiltonian closest to any Hamiltonian, and to perform a Hamiltonian version of the quantum singular value transformation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.