Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WaveSNet: Wavelet Integrated Deep Networks for Image Segmentation (2005.14461v1)

Published 29 May 2020 in cs.CV

Abstract: In deep networks, the lost data details significantly degrade the performances of image segmentation. In this paper, we propose to apply Discrete Wavelet Transform (DWT) to extract the data details during feature map down-sampling, and adopt Inverse DWT (IDWT) with the extracted details during the up-sampling to recover the details. We firstly transform DWT/IDWT as general network layers, which are applicable to 1D/2D/3D data and various wavelets like Haar, Cohen, and Daubechies, etc. Then, we design wavelet integrated deep networks for image segmentation (WaveSNets) based on various architectures, including U-Net, SegNet, and DeepLabv3+. Due to the effectiveness of the DWT/IDWT in processing data details, experimental results on CamVid, Pascal VOC, and Cityscapes show that our WaveSNets achieve better segmentation performances than their vanilla versions.

Citations (17)

Summary

We haven't generated a summary for this paper yet.