Papers
Topics
Authors
Recent
Search
2000 character limit reached

CoDiNet: Path Distribution Modeling with Consistency and Diversity for Dynamic Routing

Published 29 May 2020 in cs.CV | (2005.14439v3)

Abstract: Dynamic routing networks, aimed at finding the best routing paths in the networks, have achieved significant improvements to neural networks in terms of accuracy and efficiency. In this paper, we see dynamic routing networks in a fresh light, formulating a routing method as a mapping from a sample space to a routing space. From the perspective of space mapping, prevalent methods of dynamic routing didn't consider how inference paths would be distributed in the routing space. Thus, we propose a novel method, termed CoDiNet, to model the relationship between a sample space and a routing space by regularizing the distribution of routing paths with the properties of consistency and diversity. Specifically, samples with similar semantics should be mapped into the same area in routing space, while those with dissimilar semantics should be mapped into different areas. Moreover, we design a customizable dynamic routing module, which can strike a balance between accuracy and efficiency. When deployed upon ResNet models, our method achieves higher performance and effectively reduces average computational cost on four widely used datasets.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.