Papers
Topics
Authors
Recent
2000 character limit reached

Neural Network Flame Closure for a Turbulent Combustor with Unsteady Pressure

Published 28 May 2020 in physics.flu-dyn | (2005.14167v4)

Abstract: In this paper, neural network (NN)-based models are generated to replace flamelet tables for sub-grid modeling in large-eddy simulations of a single-injector liquid-propellant rocket engine. In the most accurate case, separate NNs for each of the flame variables are designed and tested by comparing the NN output values with the corresponding values in the table. The gas constant, internal flame energy, and flame heat capacity ratio are estimated with 0.0506%, 0.0852%, and 0.0778% error, respectively. Flame temperature, thermal conductivity, and the coefficient of heat capacity ratio are estimated with 0.63%, 0.68%, and 0.86% error, respectively. The progress variable reaction rate is also estimated with 3.59% error. The errors are calculated based on mean square error over all points in the table. The developed NNs are successfully implemented within the CFD simulation, replacing the flamelet table entirely. The NN-based CFD is validated through comparison of its results with the table-based CFD.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.