Meromorphic $L^2$ functions on flat surfaces (2005.13851v1)
Abstract: We prove a quantitative version of the non-uniform hyperbolicity of the Teichm\"uller geodesic flow. Namely, at each point of any Teichm\"uller flow line, we bound the infinitesimal spectral gap for variations of the Hodge norm along the flow line in terms of an easily estimated geometric quantity on the flat surface, which is greater than or equal to the flat systole. As applications, we strengthen results of Trevi~no and Smith regarding unique ergodicity of measured foliations, and give an estimate for the spectral gaps of pseudo-Anosov homeomorphisms based on the location of their axes in the moduli space of quadratic differentials.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.