Optimal transport and the Gauss curvature equation
Abstract: In this short note, we consider the problem of prescribing the Gauss curvature and image of the Gauss map for the graph of a function over a domain in Euclidean space. The prescription of the image of the Gauss map turns this into a second boundary value problem. Our main observation is that this problem can be posed as an optimal transport problem where the target is a subset of the lower hemisphere of $\mathbb{S}n$. As a result we obtain existence and regularity of solutions under mild assumptions on the curvature, as well as a quantitative version of a gradient blowup result due to Urbas, which turns out to fall within the optimal transport framework.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.