Papers
Topics
Authors
Recent
2000 character limit reached

Optimal transport and the Gauss curvature equation

Published 27 May 2020 in math.AP | (2005.13492v1)

Abstract: In this short note, we consider the problem of prescribing the Gauss curvature and image of the Gauss map for the graph of a function over a domain in Euclidean space. The prescription of the image of the Gauss map turns this into a second boundary value problem. Our main observation is that this problem can be posed as an optimal transport problem where the target is a subset of the lower hemisphere of $\mathbb{S}n$. As a result we obtain existence and regularity of solutions under mild assumptions on the curvature, as well as a quantitative version of a gradient blowup result due to Urbas, which turns out to fall within the optimal transport framework.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.