Papers
Topics
Authors
Recent
2000 character limit reached

Chance Constraint Tuning for Optimal Power Flow

Published 27 May 2020 in math.OC | (2005.13428v1)

Abstract: In this paper, we consider a chance-constrained formulation of the optimal power flow problem to handle uncertainties resulting from renewable generation and load variability. We propose a tuning method that iterates between solving an approximated reformulation of the optimization problem and using a posteriori sample-based evaluations to refine the reformulation. Our method is applicable to both single and joint chance constraints and does not rely on any distributional assumptions on the uncertainty. In a case study for the IEEE 24-bus system, we demonstrate that our method is computationally efficient and enforces chance constraints without over-conservatism.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.