Papers
Topics
Authors
Recent
Search
2000 character limit reached

Regular Black Hole Interior Spacetime Supported by Three-Form Field

Published 27 May 2020 in gr-qc and hep-th | (2005.13260v2)

Abstract: In this paper, we show that a minimally coupled 3-form endowed with a proper potential can support a regular black hole interior. By choosing an appropriate form for the metric function representing the radius of the 2-sphere, we solve for the 3-form field and its potential. Using the obtained solution, we construct an interior black hole spacetime which is everywhere regular. The singularity is replaced with a Nariai-type spacetime, whose topology is $\text{dS}_2 \times \text{S}2$, in which the radius of the 2-sphere is constant. So long as the interior continues to expand indefinitely, the geometry becomes essentially compactified. The 2-dimensional de Sitter geometry appears despite the negative potential of the 3-form field. Such a dynamical compactification could shed some light on the origin of de Sitter geometry of our Universe, exacerbated by the Swampland conjecture. In addition, we show that the spacetime is geodesically complete. The geometry is singularity-free due to the violation of the null energy condition.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.