Topological Anderson insulators in two-dimensional non-Hermitian disordered systems
Abstract: The interplay among topology, disorder, and non-Hermiticity can induce some exotic topological and localization phenomena. Here we investigate this interplay in a two-dimensional non-Hermitian disordered Chern-insulator model with two typical kinds of non-Hermiticities, the nonreciprocal hopping and on-site gain-and-loss effects. The topological phase diagrams are obtained by numerically calculating two topological invariants in the real space, which are the disorder-averaged open-bulk Chern number and the generalized Bott index, respectively. We reveal that the nonreciprocal hopping (the gain-and-loss effect) can enlarge (reduce) the topological regions and the topological Anderson insulators induced by disorders can exist under both kinds of non-Hermiticities. Furthermore, we study the localization properties of the system in the topologically nontrivial and trivial regions by using the inverse participation ratio and the expansion of single particle density distribution.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.