Papers
Topics
Authors
Recent
2000 character limit reached

Utilizing FastText for Venue Recommendation

Published 14 May 2020 in cs.IR and cs.LG | (2005.12982v1)

Abstract: Venue recommendation systems model the past interactions (i.e., check-ins) of the users and recommend venues. Traditional recommendation systems employ collaborative filtering, content-based filtering or matrix factorization. Recently, vector space embedding and deep learning algorithms are also used for recommendation. In this work, I propose a method for recommending top-k venues by utilizing the sequentiality feature of check-ins and a recent vector space embedding method, namely the FastText. Our proposed method; forms groups of check-ins, learns the vector space representations of the venues and utilizes the learned embeddings to make venue recommendations. I measure the performance of the proposed method using a Foursquare check-in dataset.The results show that the proposed method performs better than the state-of-the-art methods.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.