2000 character limit reached
BHN: A Brain-like Heterogeneous Network (2005.12826v2)
Published 26 May 2020 in cs.NE and cs.AI
Abstract: The human brain works in an unsupervised way, and more than one brain region is essential for lighting up intelligence. Inspired by this, we propose a brain-like heterogeneous network (BHN), which can cooperatively learn a lot of distributed representations and one global attention representation. By optimizing distributed, self-supervised, and gradient-isolated objective functions in a minimax fashion, our model improves its representations, which are generated from patches of pictures or frames of videos in experiments.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.